A view from Automotive and Aerospace

Mike Dempsey
Managing Director

Unlocking Innovation in Rail

Claytex Services Limited

Software, Consultancy, Training

- Based in Leamington Spa, UK
 - Office in Cape Town, South Africa
- Experts in Systems Engineering, Modelling and Simulation
- Business Activities
 - Engineering consultancy
 - Software sales and support
 - Modelica library developers
 - FMI tool developers
 - Training services
- Global customer base
 - Europe, USA, India, South Korea, Japan
 - Automotive OEM's and suppliers
 - Formula 1, NASCAR, IndyCar
 - Aerospace OEM's and suppliers

Model Based Systems Engineering

- Claytex provides software tools and services to support the complete systems engineering process
- Traceability
 - Reqtify connects to your existing tool chain and automates the tracing of information
 - Supports impact analysis and change management
- Definition and decomposition
 - Dymola and ControlBuild provide a hierarchical model based approach to systems engineering
 - Dymola is used to model the physics of the system
 - ControlBuild is used to develop the control systems and generate robust PLC code
- Integration and Test
 - Dymola and ControlBuild support Hardware-in-the-Loop testing
 - rFpro supports Driver-in-the-Loop testing

Challenges facing Automotive

- Market demands
 - Improved efficiency
 - Lower emissions
 - Improved reliability
 - Noise quality
 - Driveability
 - Performance
- Engineering solutions
 - More active systems
 - Increases complexity
 - Better control of existing systems
 - Increasingly complex control requiring large calibration effort
 - Tighter integration of all vehicle systems
- Management demands
 - Faster time to market
 - Lower development and manufacturing cost

The need for modelling and simulation

- Automotive products are complex systems covering many domains
 - Mechanical, Electrical, Hydraulic, Pneumatic,
 Thermal, Chemical, Control, Magnetic, ...
- No longer sensible to wait for prototypes to verify that all these systems interact in a good way
 - Many OEM's share the vision of zero prototyping
- It's not practical, or perhaps even possible, to fully verify and validate control systems using prototypes
- Need to use predictive models and not just functional ones to make simulation useful from an early stage of the project
- Need a complete virtual test environment

Functional and Predictive models

- A Functional model is one that captures the key function of the model
- A Predictive model allows us to predict the behaviour and explore it's characteristics

- The clutch is there to make sure the two inertias rotate at the same speed when engaged
- Functional model
 - Would reduce the relative speed across the clutch in a predefined manner
 - The controlling parameter would be the engagement time
- Predictive model
 - Would include a model for friction and the torque transfer would be a function of the clutch clamp load, relative speed, temperature, ...
 - The parameters would include the geometry and friction characteristics
 - The engagement time could be predicted under different operating scenarios

Vehicle Modelling

- Gearbox and Driveline
 - Mechanics
 - Thermal
 - Hydraulics
 - Electrification
 - Control
- MechanicsCooling system
- Fuel system

Engine

Air flow

- Control system
- Electrification
- Hydraulics

Rolling stock is built up from many of the same systems and therefore the same simulation technology could be applied

- Battery
 - Electrical
 - Thermal
 - Cooling
 - Control
- Chassis
 - Mechanics
 - Active systems
 - Control
- Electric Drive
- Electrical
- Thermal
- Control

- Thermal Management
 - Engine Cooling
 - HVAC
 - Battery Cooling
 - Power Electronics Cooling

Virtual Test Environment

- Complete virtual environment with high fidelity track/road data and vehicle models
- Scaleable from workstation to full motion simulators
- Allows you to reintroduce the human test driver into the model based development process
- Supports the development of ADAS

Deployment and reuse of models

- To unleash the real value in models we need to be able to reuse them in many different ways
 - In Motorsport we find the same models used in the design office, trackside tools, telemetry systems and test environments
- We use open standards for sharing models between tools
 - Functional Mock-up Interface Standard
 - Supported by 80+ tools from many different developers
 - Dymola, Simulink, Excel, ControlBuild, dSpace, Simpack,
- Provide engineers and programme managers with easy to use and familiar tools backed up with complex, robust simulations
 - For example, using Microsoft Excel as the user interface allowing access to a limited number of parameters

ISO 26262 – Road vehicles – Functional Safety

- Similar in concept to IEC 61508 and EN50128 in Rail
- Goals of ISO 26262:
 - Provides a lifecycle safety framework
 - Covers functional safety aspects of the entire development process
 - Provides a risk-based approach for determining risk classes (Automotive Safety Integrity Levels, ASILs)
 - Uses ASILs for specifying the item's safety
 requirements to achieve an acceptable residual risk
 - Provides requirements to ensure a sufficient and acceptable level of safety is being achieved
- What does this mean?
 - You need traceability throughout the development process
 - You need to generate and keep evidence to support your decisions

Summary

- Automotive is moving towards "zero prototype" development process
- To achieve this requires tools and processes to support the whole systems engineering process
 - Traceability
 - Model based approach to systems engineering
 - Simulation based on predictive models
 - Potential for automation of repetitive tasks, DOE, reviews
 - Reuse of models
 - Virtual test environments
- For further information:
 - www.claytex.com
 - 01926 885900

