Multi-domain vehicle dynamics models for Driver-In-the-Loop simulation
Claytex Services Limited

• Based in Leamington Spa, UK
 – Office in Cape Town, South Africa
• Established in 1998
• Experts in Systems Engineering, Modelling and Simulation
 – Focused on physical modelling and simulation using the open standards: Modelica and FMI
• Business Activities
 – Engineering consultancy
 – Software sales and support
 • Dassault Systemes
 • rFpro
 – Modelica library developers
 – Training services
• Global customer base
What does Claytex do?

• Engineering consultancy
 – Process development and improvement
 – Model development and analysis services
 – Integration of models with HiL, MiL, DiL tools and processes
 • Optimisation of models for real-time fixed step simulation
 • Coupling to Driver-in-the-loop platforms including commercial solutions from Ansible Motion and McLaren Applied Technologies and bespoke solutions

• Software distributors
 – Dassault Systemes partner specialised in Systems Engineering tools: Dymola, Reqtify, ControlBuild, AUTOSAR Builder and CATIA Systems portfolios
 – rFactor Pro: DiL simulators for vehicle dynamics engineering

• Modelica library developers
 – Solutions for: Engines, Powertrain Dynamics, Vehicle Dynamics, DiL and related libraries compatible with Dymola

• FMI tool developers
 – Including the FMI Blockset for Simulink
Introduction

• Driving simulators increasingly used in both Motorsport and Automotive
• Originally introduced in Motorsport for driver training
• Allows tests to be completely safe and in repeatable conditions
• Due to testing restrictions now used to evaluate new designs, new technologies and work on car setup before arriving at the race track
• Broad range of approaches to suit different needs
 – Desktop system
 – Small motion systems with 3-4 dof
 – Full motion platforms with 6 dof
 • Entertainment systems
 • Engineering development systems
Example Motorsport System

• Simulators for engineering development
• Ansible Motion Series 1 platform
 – 6 degrees of freedom
 – Large excursions possible on all axes
 – High frequency range for realistic motion cueing
• rFactor Pro graphics, sound and track data
 – Low latency and high bandwidth offering the fastest video & audio pipelines
 – Extensive range of tracks available for Motorsport and Automotive applications
• Dymola based vehicle dynamics model
 – Multi-domain vehicle model
Example Desktop System

- Able to evaluate baseline capability of a vehicle or enable detailed assessment and development of a control system, steer-by-wire system, etc.
- Key features:
 - rFactor Pro provides the core capability
 - Range of test scenarios (race tracks, proving ground)
 - High quality graphics on multiple monitors
 - Dymola vehicle model
 - Full MultiBody chassis model
 - Multi-domain vehicle model
 - Telemetry system
 - Steering wheel
 - Gaming systems or sophisticated handwheel motor
 - Sensodrive, Ansible Motion, etc.
 - 1 PC used for the complete simulator system
 - Connect laptop with calibration and telemetry tools
 - HiL system
 - Concurrent, dSpace, etc.
Physics Model

• Has to provide an accurate representation of the complete vehicle
 – Tyres
 – Suspension
 – Powertrain
 – Multi-domain system: mechanics, control, electrical, fluids, etc.
• Has to run in real-time, typically 1kHz for a full motion driving simulator
• Has to give the driver the right “feeling” about the behaviour of the car
 – Feedback through the steering wheel
 – Transient behaviour
Dymola

- Component orientated, physical modelling tool
- Modelling and simulation of systems integrating multiple physical domains
- Based on Modelica
- Supports the FMI standard
- Application libraries to model the whole car
- Part of the CATIA brand
Component Orientated Modelling

- Modelling and simulation of systems integrating multiple physical domains
 - Mechanics (1D, MultiBody), 1D Thermofluids, Control, Thermal, Electrical, Magnetics and more
- Promotes extensive model reuse at component and system level
 - Components represent physical parts: valves, gears, motor
 - Connections between parts describe the physical connection (mechanical, electrical, thermal, signal, etc.)
- Store your own component and system models in libraries to easily share and reuse them across the business
• Models are defined using the Modelica modelling language
 – A generic modelling language
 – Design for convenient, component orientated modelling of complex multi-domain systems
 – Models are defined as differential algebraic equations (DAE)
• A freely available, open source, standardised modelling language
• Developed and maintained by the Modelica Association
 – An independent, international not-for-profit organisation
 – Established in 1996
 – Currently over 100 members from academia, tool vendors and industrial end-users
 • Anyone can get involved
• The Modelica Standard Library contains basic models in many engineering domains
Model Definition

• Models are defined using the Modelica modelling language

```model Inertia
extends Interfaces.Rigid;
parameter SI.Inertia J=1 "Moment of Inertia";
SI.AngularVelocity w "Angular velocity";
SI.AngularAcceleration a "Angular acceleration";
equation
  w = der(phi);
  a = der(w);
  flange_a.tau + flange_b.tau = J * a;
end Inertia;
```

• Symbolic manipulation automatically transforms the models into efficient simulation code
• Can deliver real-time simulation performance of Vehicle Dynamics models with over 100,000 equations (at 1kHz)
• Supports multi-threading to make full use of multi-core machines
Modelica Application Libraries

- Air Conditioning
- Electric Power
- Engines
- FlexBody
- Flexible Bodies
- Flight Dynamics
- Fuel Cell
- Heat Exchanger
- Human Comfort
- Hydraulics
- Liquid Cooling
- Pneumatics
- Powertrain Dynamics
- Simulator
- Smart Electric Drives
- SystemID
- Terrain Server
- Thermal Power
- TIL Suite
- Vapor Cycle
- Vehicle Dynamics
- VDLMotorsports
- XMLReader
Vehicle Dynamics for Motorsports

- VDLMotorsports Library
 - Add-on to Vehicle Dynamics library
 - Used in Formula 1, IndyCar, GP2, NASCAR and sports car racing
- Includes adjustable suspension
 - Specify shim thickness to adjust track rod, pushrod, etc.
- Kinematic and compliant suspension models
- Includes setup and quasi-static experiments
- Real-time capable MultiBody models
- Open and extendible
- Simulator Library provides out-of-the-box integration with rFactor Pro for DiL
Vehicle Dynamics for Road Cars

- Vehicle Dynamics Library
 - Template based approach to modelling
- Library of MultiBody suspension templates
 - McPherson, double wishbone, multi-link, trailing arm, …
 - Open and extendible to allow you to add your own templates
- Kinematic and compliant models
 - Non-linear bushes or ideal joints
 - Structural compliance effects
- Wide range of experiments
 - Quarter car, half car, whole chassis, full vehicle
 - Closed loop and open loop driver models
- Provides models for real-time simulation
- 3D Road Definition and support for rFPro Terrain Server and OpenCRG
Powertrain Modelling

• Engines Library
 – Mean value and Crank angle resolved models
 – 1D thermofluids for the air-path, fuel-path, cooling, lubrication
 – MultiBody mechanics for complete engine
 – Thermal network

• Powertrain Dynamics Library
 – MultiBody mechanics for transmission and driveline
 – Thermal effects in friction
 – Variable fidelity models to support fast drive cycle simulation and detailed driveability analysis
Hybrid Powertrains

• Batteries
 – Parameter estimation functions to define the cell models from test data capturing electrical, thermal and ageing effects
 – Cell models are equivalent electrical circuit models
 – Model architecture to conveniently build the module and pack models from a validated cell model
 – 1D thermofluid approach for the cooling systems

• Electric Motors and Power Electronics
 – Motor models for fast simulation or detailed transient analysis
 – Power electronics can be ideal power balanced models or include switching effects
 – Field orientated control built into motors
 – Thermal effects in the power electronics and motors
Control Systems

• Control systems in Dymola
 – Block diagrams
 – Finite state machines
 – Procedural code
• Dymola includes state of the art controller design tools
 – Model inversion to support model based control design
 • For example: use the same bicycle model as a reference model and in feed-forward design
 – Linearisation of physical models
• Integrate existing controllers
 – Import FMI compliant models
 • FMI is an open standard for model exchange supported by over 50 engineering tools
 • Simulink models can be compiled to be FMI compliant using a Simulink Coder target provided with Dymola
 – Import c-code
 • Dymola supports the use of c-code within a Modelica model
 – Export the Dymola model to be FMI compliant and use in other tools
 • e.g. FMI Blockset for Simulink, Silver, etc.
Driver-in-the-Loop Simulators

• Claytex have developed a set of solutions that enable Vehicle Dynamics models to be used with rFactor Pro
 – Simply plug the vehicle model in to a template and execute the build function
• Compiles model to work with McLaren Electronics vTAG and PTWinSim environments
 – Soft real-time environments
• Compatible with the HiL environments using the Dymola tools (dSpace, xPC, etc.)
• Solution proven on several motion platforms
 – Ansible Motion, McLaren Electronics, MOOG
• Also used for static simulation environments
• Supports full range of rFactor Pro features
 – High Definition Terrain Server and multiple tyre contact points
 – Collisions
Formula 1 2014 Powertrains

• Dymola is used by F1 teams, NASCAR and IndyCar
• Using Dymola it was possible for the teams to simulate the 2014 powertrain as part of a complete vehicle model
 – Engine performance and efficiency
 – MGU-H and MGU-K strategies
 – Thermal management of all systems
 – Impact on vehicle dynamics of higher torque output and delivery
• Why is Dymola popular in Motorsport?
 – Extensive range of application libraries
 – Based on Modelica which means the models are open and extendible
 – Powerful modelling language to implement new ideas from first principles and explore the behaviour
 – The same model can be shared across the team and deployed for different applications
 • Desktop, HiL, SiL, DiL, trackside, …
Simulation experiment

Driver model
- Throttle
- Brake
- Steering
- Gears

Vehicle model
- Powertrain
- Chassis
- Brakes
- Tyres

World
- Coordinate system
- Gravity
- Animation settings

Atmosphere
- Pressure
- Density
- Wind speed and direction

Road model
- 3D road surface model
- Inclination
- Friction coefficient of surface
Vehicle model

- Vehicle Dynamics
 - Multibody chassis
 - Pacejka tyre models
 - Aerodynamics
 - Ground impact

- Brakes

- Powertrain
 - Engines
 - Power unit ICE and cooling
 - Electrical libraries
 - MGU-K
 - MGU-H
 - Energy Storage
 - Driveline
 - Gearbox
Chassis and suspension

- Real-time model includes
 - Heave spring
 - Heave damper/inerter
 - Roll damper
 - Ride dampers
 - Torsion bars
 - Anti-roll bar
Animation of front suspension
• Parameterised mean value engine model is pressure charged by means of a mapped turbocharger and integrated with the MGU-H and MGU-K in the power unit model below:
MGU and Energy Storage representation

MGU-K and MGU-H

- Electrical effects
 - Internal resistance
 - Heat losses
 - Inductance
- Mechanical effects:
 - Inertia
 - Frictional losses
 - Heat rejection
 - Torque reaction into MGU support

Energy Storage

- Equivalent Circuit model
 - Internal resistance
 - Diffusion limitation
 - Thermal losses
 - Resistance
 - Capacitance
 - OCV with temperature & SOC dependency
Simulation results

• Ability to interface multiple domains to understand the whole system dynamics
• Multiple ERS control strategies were evaluated using physical system models
• Models are real-time capable and can be used within a driver simulator
Driver-in-the-loop

• Dymola models can then be exported to run as part of a driving simulator
 – Run the model directly within rFPro
 • McLaren Electronics vTAG or Podium Technologies PTWinSim
 – Run the model on a HiL system
 • Concurrent, dSpace, etc.
• Technology also supports road car applications
 – Same motion platform with different cockpit
 – Urban environments and proving ground rather than race tracks to drive on
Summary

• Modelica and Dymola can be used to create multi-domain vehicle models suitable for use in Driver-in-the-Loop applications
 – MultiBody vehicle dynamics models
 – Mean value engine models
 – Electrical and thermal models
 – Control systems
• Using Dymola, new design ideas and concepts can be quickly modelled and compiled for use in the simulator
 – Enables real drivers to start evaluating these ideas at a very early stage in the development process
 – The simulator usage increases and is brought earlier in to the development process
• Supports HiL integration to enable calibration and validation of real controllers
Contact

For further information please contact:

Mike Dempsey
Claytex Services Ltd.
Edmund House
Rugby Road
Leamington Spa
CV32 6EL
UK

Tel +44 1926 885900
Fax +44 1926 885910
mike.dempsey@claytex.com