Low Carbon Vehicle Event 2016

The UK's Premier Low Carbon Vehicle Event

Virtual Testing of the Full Vehicle System

Mike Dempsey

Claytex Services Limited

Software, Consultancy, Training

- Based in Leamington Spa, UK
 - Office in Cape Town, South Africa
- Experts in Systems Engineering, Modelling and Simulation
- Business Activities
 - Engineering consultancy
 - Software sales and support
 - Modelica library developers
 - FMI tool developers
 - Training services
 - Dassault Systemes Certified Education Partner
- Global customer base
 - Europe, USA, India, South Korea, Japan

The need for virtual testing and development

- Automotive products are complex systems covering many domains
 - Mechanical, Electrical, Hydraulic, Pneumatic,
 Thermal, Chemical, Control, Magnetic, ...
- No longer sensible to wait for prototypes to verify that all these systems interact in a good way
 - Parts arrive too late in the process to make cost effective changes if they don't work together as intended
- It's not practical, or perhaps even possible, to fully verify and validate control systems using prototypes
 - There are too many scenarios to be considered some of which would be dangerous to the driver and prototype

Virtual testing and development

- Need to simulate the complete vehicle
 - Plant and controller
 - Must use predictive models and not just functional ones to make simulation useful from an early stage of the project
- Need a complete virtual test environment
 - Should provide an immersive environment for both the human driver and vehicle sensors
 - Needs to be flexible to define different driving scenarios
- Our solution:
 - Dymola for the vehicle physics
 - rFpro for the virtual environment
 - SiL and/or HiL for the control systems

- Multi-domain modelling and simulation of complex dynamic systems
 - Mechanical, Electrical, Hydraulic,
 Pneumatic, ThermoFluids, Thermal, Control
- Component orientated modelling
 - Components represent physical parts: valves, gears, motor
 - Connections between parts describe the physical connection (mechanical, electrical, thermal, signal, etc.)
- Built on open standards of Modelica and FMI
 - Modelica is the modelling language
 - FMI is an open standard for model exchange
- Supports a model based development process

Vehicle Modelling and Simulation

- Mechanics
- Thermal
- Hydraulics
- Electrification
- Control
- Cooling system
- Fuel system

Mechanics

Engine

Air flow

- Control system
- Electrification
- Hydraulics
- Thermal Management
 - Engine Cooling
 - HVAC
 - Battery Cooling
 - Power Electronics Cooling

DYMOLA focuses on physical modelling using Modelica and the integration of these models into the design process

- Electrical
- Thermal
- Cooling
- Control

- Mechanics
- Active systems
- Control

- Electrical
- Thermal
- Control

Modelica Libraries for Automotive

- Extensive suite of libraries covering every aspect of the vehicle
- The Automotive Library provides the foundation
 - Defines the model architecture, coordinate systems, etc.
 - Flexible so any vehicle architecture can be created
 - Provides models for performance, fuel economy and energy analysis
- Application focused libraries provide detailed simulation capabilities
 - Engines Library includes 1D thermofluids, MultiBody mechanics, combustion models
 - Chassis Dynamics Library provides MultiBody suspension and tyre models
 - Electrified Powertrains Library provides a motor/generator and power electronics models at a wide range of detail levels
- Many of the models are suitable for real-time simulation

Engines
Powertrain Dynamics
Chassis Dynamics
rFpro Integration
Battery
Cooling
Hydraulics
Pneumatic
FlexBody
HVAC

Automotive

Vehicle Dynamics Simulation

- Full vehicle model including engine, gearbox, driveline, cooling system, suspension
- Visibility of every variable within the model to investigate the behaviour
- Easily define different test scenarios with open and closed loop driver models
 - 3D roads
 - Drive cycles
 - Varying ambient conditions
- Animation aids the understanding of the data traces

- rFpro provides an environment for vehicle testing and development
- Allows you to reintroduce the human test driver into the model based development process
- Accurate digital track models using LiDAR
 - Extensive library of race tracks, proving grounds and public roads
- Capable of feeding camera, LiDAR, radar and ultrasound sensor models to support ADAS and autonomous vehicle development
- Incorporate traffic simulations to build complex test environments

Virtual Test Environment

- Scaleable from workstation to full DiL simulators
- Modular architecture enables the system to be scaled to suit evolving needs
- Supports SiL and HiL for vehicle physics and controllers
 - Run a mixture of models and real controllers to suit the project requirements
 - SiL environment supports standard calibration tools
 - Wide range of HiL platforms have been integrated
- Dymola models can be easily compiled to run in either SiL or HiL environments

Drivers view

- rFpro using LiDAR scans of public roads
- Dymola providing the vehicle physics and control
- Human driver

Sensor feeds

- Sensors need to be fed with the same high fidelity data as the driver
- Apply lens distortion effects to replicate what the real camera sees
- Each pixel can be interpreted as distance information to feed LiDAR, Radar and Ultrasound sensors

Summary

- Dymola provides a comprehensive suite of automotive focused libraries
 - Built on the Modelica modelling language
 - Application libraries cover every aspect of the vehicle: engine, vehicle dynamics, electrification, hvac, ...
- rFpro provides an immersive virtual test environment
 - High fidelity graphics, audio and track data
 - Extensive library of tracks, public roads and proving grounds
 - Define complex scenarios including traffic
- Integration of simulation and virtual test environment accelerates vehicle development

